Jump to content

LTE / TD-LTE Compatibility


Recommended Posts

Now that it looks like Clear is moving full steam ahead with its TD-LTE network, how is the interoperability between traditional LTE (being deployed by AT&T, Sprint & Verizon) and TD-LTE?

 

Furthermore, given the Chinese governments delay in issuing TD-LTE licenses for a few years, WHAT IF (big "what if"), China decides to go a different route than TD-LTE? What are the compatibility ramifications for Clearwire?

 

It appears TD-LTE is a superior technology to traditional LTE given that its LTE advanced-ready and it is much better at penetrating walls in higher spectrum frequencies such as Clear's 2.5 GHz. However, if its not compatible with the rest of the world, isolation could cause all sorts of issues including lack of roaming agreements and OEM / device support. Just ask Sprint, they are spending billions to dump WiMAX and go LTE since they would have been in a similar situation.

  • Like 1
Link to comment
Share on other sites

As far as interoperability goes Sprint claims the transition will be seamless between the two technologies.

 

Wtih regards to traditional FDD-LTE vs TD-LTE, they are both still LTE rel. 9 (or 10 when advanced is rolled out) and are different only in the method they make use of spectrum. FDD-LTE is meant for traditional paired spectrum like the Sprint PCS band which has seperated uplink and downlink channels. One example of paired spectrum is the PCS G-Block which uses 1910-1915 mhz uplink and 1990-1995mhz downlink. These two links are seperated by 75mhz of bandwidth.

 

TD-LTE is designed to be used with unpaired spectrum like the Clear BRS band which may be (making this up) 2500-2520mhz which has no separation (or guard band) between the downlink and the uplink. TD or Time division compensates for this by making use of that same band for both uplink and downlink and switches between the two links as a function of time like alternating current.

 

So one isn't necessarily better than the other they are just designed for different spectrum allocations (paired vs. unpaired).

  • Like 1
Link to comment
Share on other sites

The next big issue for wireless is: developing a chip set that is interoperable with the different bands of spectrum and roaming agreements. A chip hasn't been developed yet to allow cross usage among all the carriers spectrum, only a say about 3 or 4 different frrequencies. The FCC is going to have to step in to get roaming agreements. AT&T and Verizon are fighting it, but Sprint, T-Mobile and the regionals need it.

Link to comment
Share on other sites

Sort of like the Gobi 4000, but made small enough for mobile phones. But like you said, the big two (if not all) of the carriers might not want such a beast. Only then can the world be at our doorstep without having to worry about spectrums, roaming agreements and carriers stubborness.

 

TS

  • Like 1
Link to comment
Share on other sites

I'm growing tired of reminding people of this: the chip's support of the bands is not an issue. The present Qualcomm MDM9600 modem (in the HTC Thunderbolt & Rezound along with numerous AT&T devices and the upcoming iPad3) used for LTE does Verizon 700, AT&T 700, and will work in PCS, AWS, and all defined LTE bands. The problem is the RF electronics (preamps, diplexers, filters) and antennas. There is not physical room to support more than 1 or 2 LTE bands on a phone that will fit into your pocket. The only phones approved with more than a single LTE band class are the upcoming AT&T phones approved for 700 and AWS, and the reason they're approved is because they only have to support 2 bands of GSM/GPRS/HSPA. So 4 bands total.

Edited by 4ringsnbr
  • Like 4
Link to comment
Share on other sites

I'm growing tired of reminding people of this: the chip's support of the bands is not an issue. The present Qualcomm MDM9600 modem (in the HTC Thunderbolt & Rezound along with numerous AT&T devices and the upcoming iPad3) used for LTE does Verizon 700, AT&T 700, and will work in PCS, AWS, and all defined LTE bands. The problem is the RF electronics (preamps, diplexers, filters) and antennas. There is not physical room to support more than 1 or 2 LTE bands on a phone that will fit into your pocket. The only phones approved with more than a single LTE band class are the upcoming AT&T phones approved for 700 and AWS, and the reason they're approved is because they only have to support 2 bands of GSM/GPRS/HSPA. So 4 bands total.

 

4rings...yes you have definitely posted that before. I appreciate your info, even if you are an overly direct communicator. :P

 

Robert

Link to comment
Share on other sites

I'm growing tired of reminding people of this: the chip's support of the bands is not an issue. The present Qualcomm MDM9600 modem (in the HTC Thunderbolt & Rezound along with numerous AT&T devices and the upcoming iPad3) used for LTE does Verizon 700, AT&T 700, and will work in PCS, AWS, and all defined LTE bands. The problem is the RF electronics (preamps, diplexers, filters) and antennas. There is not physical room to support more than 1 or 2 LTE bands on a phone that will fit into your pocket. The only phones approved with more than a single LTE band class are the upcoming AT&T phones approved for 700 and AWS, and the reason they're approved is because they only have to support 2 bands of GSM/GPRS/HSPA. So 4 bands total.

 

Yup Yup nothing to do with the chips now long as were using qualcomms beauties....all about the other physical stuff needed to communicate...maybe antennae tech will take a leap soon and allow this to be possible?...

 

Sent from my PG86100 using Tapatalk

Link to comment
Share on other sites

So, to listen FM radio you have to use directly connected headphones as FM antenna...

Why not use micro USB cable as "additional" antenna?

At least, I will have a perfect signal in my car or using a doc station etc...

Patent for it is buried somewhere already?

Link to comment
Share on other sites

  • 4 weeks later...

So, to listen FM radio you have to use directly connected headphones as FM antenna...

Why not use micro USB cable as "additional" antenna?

At least, I will have a perfect signal in my car or using a doc station etc...

Patent for it is buried somewhere already?

 

I'm assuming because USB has sheilding and (not to sure on this) because antennas are supposed to be certain lengths for certain wave lengths/spectrum USB cables won't support LTE too well as it doesn't handle noise well either but FM on the other hand can be recieved with a rusty coat hanger...

Link to comment
Share on other sites

I'm growing tired of reminding people of this: the chip's support of the bands is not an issue. The present Qualcomm MDM9600 modem (in the HTC Thunderbolt & Rezound along with numerous AT&T devices and the upcoming iPad3) used for LTE does Verizon 700, AT&T 700, and will work in PCS, AWS, and all defined LTE bands. The problem is the RF electronics (preamps, diplexers, filters) and antennas. There is not physical room to support more than 1 or 2 LTE bands on a phone that will fit into your pocket. The only phones approved with more than a single LTE band class are the upcoming AT&T phones approved for 700 and AWS, and the reason they're approved is because they only have to support 2 bands of GSM/GPRS/HSPA. So 4 bands total.

 

I posted about the Nokia Lumina 900 and it seems to prove that you can stuff a TON of bands inside a phone.

 

It seems like the number of bands isn't that big of an issue. Not sure how they do it, or how many antennas it has (looks like two... but not sure).

 

Any insight?

 

GSM 850/900/1800/1900, WCDMA 850/900/1900 and LTE 700/1700/2100.

Edited by irev210
Link to comment
Share on other sites

I posted about the Nokia Lumina 900 and it seems to prove that you can stuff a TON of bands inside a phone.

 

It seems like the number of bands isn't that big of an issue. Not sure how they do it, or how many antennas it has (looks like two... but not sure).

 

Any insight?

 

GSM 850/900/1800/1900, WCDMA 850/900/1900 and LTE 700/1700/2100.

 

irev, in this and your aforementioned previous post, you seem to confuse bands with modes.

 

Cellular 850 MHz, GSM 900 MHz, DCS 1800 MHz, and PCS 1900 MHz are four bands. Band wise, the GSM and W-CDMA distinctions are irrelevant; those airlinks represent only separate modes. So, just four bands are needed to cover the GSM and W-CDMA modes.

 

As for LTE, Lower 700 MHz and AWS 2100+1700 MHz are separate bands. Also, "2100" may indicate IMT 2100+1900 MHz as an additional supported band. While all three are indeed separate bands, they may not, for example, require as many additional antennas (or antenna capabilities) as meets the eye.

 

Lower 700 MHz, yes, requires its own compatible antennas. However, AWS and IMT share essentially the same downlink frequencies, hence can share the same downlink MIMO antennas. Furthermore, since LTE uplink MIMO is not apt to be a reality on handsets anytime soon, a single antenna per uplink band should suffice. AWS uplink corresponds very closely to DCS uplink, while IMT uplink corresponds very closely to PCS downlink. So, those antennas may be reused.

 

Now, that said, all bands do require appropriate power amp modules and filters, so it is still no free lunch. But my primary point is that you inflate the number of bands. For further clarification, see the previous thread:

 

http://s4gru.com/ind...okia-lumia-900/

 

AJ

Link to comment
Share on other sites

I posted about the Nokia Lumina 900 and it seems to prove that you can stuff a TON of bands inside a phone.

 

It seems like the number of bands isn't that big of an issue. Not sure how they do it, or how many antennas it has (looks like two... but not sure).

 

Any insight?

 

GSM 850/900/1800/1900, WCDMA 850/900/1900 and LTE 700/1700/2100.

 

GSM and WCDMA can be done with a single Tx and single Rx antenna and the U.S. / European 850/900 and 1800/1900 GSM/WCDMA bands have long been incorporated together in a single device. The IMT 2100 WCDMA support is a little extra compared with the standard fare, but the antenna can be shared with the PCS array. The problem is LTE since it will require 1 Tx and 2 Rx antennas (with precise spacing) to function for EACH band it supports. All of AT&T's recent devices seem to support 2 LTE bands and 2 GSM/GPRS/WCDMA bands. This device (actually two models, QMNRM-808 and QMNRM-823 is no different. It essentially supports 4 bands.

The problem when it comes to other carriers is EVDO (and 1x Advanced). EVDO requires Rx diversity too, so an extra antenna is needed per band on top of the CDMA / 1x antennas. This makes it significantly harder to engineer a multi-band CDMA and LTE device. I would imagine the first multiple band CDMA/LTE devices we'll see will be the next wave of smartphones from Verizon. They will likely support CDMA/EVDO in 850 Cellular & PCS 1900 as well as LTE in Upper C 700 (BC 13) and AWS. These will be four band devices too, but the EVDO in 850 and 1900 will require extra antennas as compared with AT&T's quad-band devices.

Link to comment
Share on other sites

GSM and WCDMA can be done with a single Tx and single Rx antenna and the U.S. / European 850/900 and 1800/1900 GSM/WCDMA bands have long been incorporated together in a single device. The IMT 2100 WCDMA support is a little extra compared with the standard fare, but the antenna can be shared with the PCS array. The problem is LTE since it will require 1 Tx and 2 Rx antennas (with precise spacing) to function for EACH band it supports. All of AT&T's recent devices seem to support 2 LTE bands and 2 GSM/GPRS/WCDMA bands. This device (actually two models, QMNRM-808 and QMNRM-823 is no different. It essentially supports 4 bands.

The problem when it comes to other carriers is EVDO (and 1x Advanced). EVDO requires Rx diversity too, so an extra antenna is needed per band on top of the CDMA / 1x antennas. This makes it significantly harder to engineer a multi-band CDMA and LTE device. I would imagine the first multiple band CDMA/LTE devices we'll see will be the next wave of smartphones from Verizon. They will likely support CDMA/EVDO in 850 Cellular & PCS 1900 as well as LTE in Upper C 700 (BC 13) and AWS. These will be four band devices too, but the EVDO in 850 and 1900 will require extra antennas as compared with AT&T's quad-band devices.

 

So is it possible that Apple will have 3 different versions of the iPhone for the US alone, all with different radio setups? That would sure put a hamper on interoperability.

Link to comment
Share on other sites

So is it possible that Apple will have 3 different versions of the iPhone for the US alone, all with different radio setups? That would sure put a hamper on interoperability.

 

Anything is possible. That is how Steve Jobs became a successful pioneer in technology.

Link to comment
Share on other sites

So is it possible that Apple will have 3 different versions of the iPhone for the US alone, all with different radio setups? That would sure put a hamper on interoperability.

 

Well there will have to be a separate AT&T and Verizon LTE model as you cannot combine the lower and upper 700 LTE spectrum in the same device with the FCC filtering requirements. The third model would probably be a pentaband phone like the GNex but have LTE in AWS and maybe PCS for other carriers-- but I don't know if the demand will be sufficient for this. I would basically expect at least 3 versions just like the new iPad. Lower and Upper 700 LTE will NEVER be interoperable-- the way they're setup and the filtering requirements to protect public safety upper and lower and channel 51 will make that a non-starter. The FCC's current investigation of LTE interoperability focuses on the Lower 700 bands 12 & 17-- the AT&T and regionals should be able to be interoperable with no issues. Band 13 (upper band used by Verizon) is totally incompatible with the rest of 700 -- it is duplex inverted, has different filtering requirements and has net neutrality requirements too.

  • Like 1
Link to comment
Share on other sites

Well there will have to be a separate AT&T and Verizon LTE model as you cannot combine the lower and upper 700 LTE spectrum in the same device with the FCC filtering requirements. The third model would probably be a pentaband phone like the GNex but have LTE in AWS and maybe PCS for other carriers-- but I don't know if the demand will be sufficient for this. I would basically expect at least 3 versions just like the new iPad. Lower and Upper 700 LTE will NEVER be interoperable-- the way they're setup and the filtering requirements to protect public safety upper and lower and channel 51 will make that a non-starter. The FCC's current investigation of LTE interoperability focuses on the Lower 700 bands 12 & 17-- the AT&T and regionals should be able to be interoperable with no issues. Band 13 (upper band used by Verizon) is totally incompatible with the rest of 700 -- it is duplex inverted, has different filtering requirements and has net neutrality requirements too.

 

So does that mean that device costs for some phones could go up?

Link to comment
Share on other sites

So does that mean that device costs for some phones could go up?

 

They may go up, but the carriers will eat it with subsidies. They will only charge what the market will bear-- in other words, whatever AT&T charges for a device of a certain class, Sprint, Verizon, and even T-Mobile will be largely tied to that cost range. A good case in point is the new Verizon LG Lucid. This is essentially the same phone Sprint will call the Viper. Verizon charges $79 for the Lucid on contract. Sprint can't afford to move much above $99 for the same basic device. They only have additional leverage because this is their only LTE device (right now). Verizon has dozens of LTE devices-- but the concept is the same. It wouldn't surprise me to see all iPhones go into the $249 - $349 on contract price range with the LTE generation since the carriers' profits are really hurt badly by the steep Apple subsidies, which are significantly higher than other phone manufacturers.

Link to comment
Share on other sites

They may go up, but the carriers will eat it with subsidies. They will only charge what the market will bear-- in other words, whatever AT&T charges for a device of a certain class, Sprint, Verizon, and even T-Mobile will be largely tied to that cost range. A good case in point is the new Verizon LG Lucid. This is essentially the same phone Sprint will call the Viper. Verizon charges $79 for the Lucid on contract. Sprint can't afford to move much above $99 for the same basic device. They only have additional leverage because this is their only LTE device (right now). Verizon has dozens of LTE devices-- but the concept is the same. It wouldn't surprise me to see all iPhones go into the $249 - $349 on contract price range with the LTE generation since the carriers' profits are really hurt badly by the steep Apple subsidies, which are significantly higher than other phone manufacturers.

 

Understandable. I saw the Lucid and I like the phone. Looks pretty nice for entry level LTE devices. When was it released?

Link to comment
Share on other sites

Understandable. I saw the Lucid and I like the phone. Looks pretty nice for entry level LTE devices. When was it released?

I think it was released about 2 weeks ago-- I didn't really pay attention-- I'm married to my MAXX for now...

Link to comment
Share on other sites

EVDO requires Rx diversity too, so an extra antenna is needed per band on top of the CDMA / 1x antennas.

 

I can find no real world basis for the frequent claim that EV-DO "requires" Rx diversity. If anything, I find more evidence for the contrary. Take the Samsung Illusion, for example, a plain Jane EV-DO 850/1900 handset on VZW. See the antenna block diagram (from the FCC OET filing):

 

6gltll.png

 

Now, unless the Samsung Illusion incorporates Rx diversity within that ~20mm x ~20mm single WWAN Tx/Rx antenna array, then EV-DO seemingly cannot "require" Rx diversity.

 

AJ

  • Like 1
Link to comment
Share on other sites

I can find no real world basis for the frequent claim that EV-DO "requires" Rx diversity. If anything, I find more evidence for the contrary. Take the Samsung Illusion, for example, a plain Jane EV-DO 850/1900 handset on VZW. See the antenna block diagram (from the FCC OET filing):

 

 

 

Now, unless the Samsung Illusion incorporates Rx diversity within that ~20mm x ~20mm single WWAN Tx/Rx antenna array, then EV-DO seemingly cannot "require" Rx diversity.

 

AJ

 

The use of required was a poor choice of words. Technically, EVDO can be done without receive diversity; however, receive diversity improves real world downlink throughput by 35 - 45% and SINR by 4-4.5 dB. This is why it is used in almost all EVDO devices (phones and aircards) for the past several years. Keep in mind that the Rx diversity is NOT MIMO, so the antenna spacing isn't as critical and these antennas may be right next to each other. In the LG Viper, I think they shared the Rx/Tx with CDMA and used one of the LTE Rx antennas for the 2nd Rx EVDO-- but I haven't looked at it in a while so I don't remember exactly. I do know it used separate antennas for Rx diversity on EVDO, but didn't necessarily share the same spacing as the LTE MIMO Rx antenna spacing. The Rx diversity just helps with multipath issues and primarily improves signals in fringe areas, though all areas do benefit from it. Technically 1x Advanced doesn't REQUIRE Rx diversity either, if 3x RTT's capacity is all that is desired; however, to get the full benefit (4x capacity of RTT), you have to have Rx diversity on 1xA. Again, I would expect manufacturers to treat it as a must-do like they do currently with EVDO Rx diversity.

Link to comment
Share on other sites

The problem when it comes to other carriers is EVDO (and 1x Advanced). EVDO requires Rx diversity too, so an extra antenna is needed per band on top of the CDMA / 1x antennas. This makes it significantly harder to engineer a multi-band CDMA and LTE device. I would imagine the first multiple band CDMA/LTE devices we'll see will be the next wave of smartphones from Verizon. They will likely support CDMA/EVDO in 850 Cellular & PCS 1900 as well as LTE in Upper C 700 (BC 13) and AWS. These will be four band devices too, but the EVDO in 850 and 1900 will require extra antennas as compared with AT&T's quad-band devices.

 

What do you make of the Samsung Aviator for USCC which appears to support dual band CDMA/EVDO (cellular, PCS) as well as quad band LTE (BC 2, 4, 5, 12)?

 

http://www.phonescoop.com/phones/phone.php?p=3638

http://www.samsung.com/us/mobile/cell-phones/SCH-R930DSAUSC-specs

Link to comment
Share on other sites

What do you make of the Samsung Aviator for USCC which appears to support dual band CDMA/EVDO (cellular, PCS) as well as quad band LTE (BC 2, 4, 5, 12)?

 

http://www.phonescoo...hone.php?p=3638

http://www.samsung.c...930DSAUSC-specs

 

Hadn't noticed that one before-- looking at the FCC approvals for RF exposure, the thing has 6 antenna arrays! The whole thing looks like an antenna. CDMA/EVDO arrays are all tucked together in the bottom left corner. The top left corner has all LTE bands Rx and Tx. The 2nd Rx for LTE bands 5 & 12 is bottom right corner and the 2nd Rx for LTE bands 4 & 2 are midway on the right hand side. BT/Wifi and GPS arrays are separated from these others. Bands 4 & 2 (PCS & AWS) should be able to use similar array spacing so sharing the locations shouldn't be an issue. Similarly BC 12 (lower 700) and BC 5 (Cellular) are also close in frequency to each other, so the antenna spacing is similar (but twice as far as the other pair of arrays). There is no filtering incompatibility issue or duplex issue with Lower 700 / Cellular / PCS / AWS, so it's just a matter of squeezing all the antennas into one (fairly large for a phone) device.

Link to comment
Share on other sites

4ringsnbr and WiWavelength - thanks for the help understanding - this is not my area of expertise.

 

The reason why I am so curious is because apple tries very hard to limit the number of devices they have on the market.

 

I am curious how many different models of the next iPhone they are going to have to make to meet the needs of wireless carriers in the US and across the globe.

 

How many bands/antennas do you think they will be able to cram into the next iPhone?

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • large.unreadcontent.png.6ef00db54e758d06

  • gallery_1_23_9202.png

  • Posts

    • Today I was driving over in Bothell/Kenmore area. I noticed the site which used to host Sprint eNB 745953 (where Waynita Way NE turns into 100th Ave NE) before it was fully decommissioned last year is now hosting all new T-Mobile gear. The gear isn't live yet but is fully installed. My guess is they plan to decommission the T-Mobile B2/B66 (enB 84647) only site a few blocks up the hill. This is a great move because decommissioning that old site would reduce interference with eNB 84740/175124. At the same time, the new location should notably improve coverage in the geographically shielded area along Waynita/100th.  The weird thing is I can't find a permit for this anywhere!
    • Mint and Ultra: Welcome to the T-Mobile Family! https://www.t-mobile.com/news/business/t-mobile-closes-acquisition-mint-and-ultra-mobile
    • https://www.t-mobile.com/2023-annual-report Most items s4gru members will be aware of, but an interesting read.
    • I've now seen 100 MHz n77 from SoftBank and 100 MHz n78 from NTT. NTT seems to be a bit better south of Osaka, though in some cases it drops down to B19 LTE as some areas around here are pretty rural. SoftBank has n77 around, but it's flakey enough that I switched eSIMs earlier this morning.
    • I'm currently typing this from a bullet train headed from Tokyo to Osaka. Using a roaming eSIM rather than T-Mobile as it's a lot cheaper, but I'll start with T-Mobile's roaming experience. Since I have a business line, I can't add data packs online, so I'm just using the 256 kbps baseline service you get by default. That service runs on Softank 4G. SoftBank has a well-built-out LTE network though, with plenty of B41, falling back to B1/3/8 as needed. 5G roaming from T-Mobile doesn't appear to exist though. I've seen 20+10 MHz B41 when I've looked, generally speaking. WiFi calling works well, and voice calls over LTE work fine too (I forgot to turn WiFi back on after doing some testing, so I expect my bill to be a dollar more next month). I want to say I even got HD voice over the cell network for the VoLTE call I did. I have a bunch of eSIMs and a couple of physical SIMs to try out. I've gotten the eSIMs up and running, but last I checked the physical SIM wasn't working even after activation so I'll run through eSIMs for the moment and update this thread with pSIM info and details on not-Tokyo in the coming days. First off, there's US Mobile's complimentary East Asia eSIM (5GB) that I grabbed before my unlimited plan Stateside expired. That SIM uses SIM Club, routing through Singapore, running on SoftBank LTE and 5G. I've seen 40 MHz n77, as well as 10x10 n28, and have seen download speeds in excess of 200 Mbps with uploads of more than 50 Mbps, though typical speeds are slower. Routing is via Equinix/Packet.net. 5G coverage is rather spotty, but LTE is plenty fast enough; either my phone doesn't want to use the 5G band combos that have more coverage or 5G coverage is just spottier here than in the US (at least on T-Mibile). Latency is as low as 95ms to sites in Singapore (usually closer to 120ms), which is pretty great considering the 3300 mi between Tokyo and Singapore. Next there's Ubigi. It also routes through Singapore via Transatel (despite being owned by NTT), and sites on top of NTT docomo's network. I didn't see NTT 5G in Tokyo when I tested it, but since then I've seen 10x10 n28, and have seen B1/B3/B19 on the LTE side. So far it's not the fastest thing out there, but I'm guessing coverage will be a little better...or maybe not. This was $17 for 10GB. Latency is a bit higher to Singapore, but still under 150ms it seems. Then there's Airalo, which was the cheapest when I bought it at $9 for 10GB. It also routes through Singapore (on Singtel), but on my S24 I have my pick of KDDI (au) or SoftBank. KDDI has extensive B41 coverage and I've seen 20+20 with UL CA. While waiting for the train at HND Terminal 3 (Keikyu line) I hit 250+ Mbps down and 10+ Mbps up...over LTE...with pretty respectable latency numbers (not much above 100ms). This is in adition to supporting SoftBank, also on LTE (my S24 defaulted to KDDI, while my wife's Pixel 8 defaulted to SoftBank and didn't seem to want to connect to KDDI). Of the various carriers mentioned, I'd say this was the best pick, though prices have bumped back up to $18 for the 10GB plan...but it's probably still what I'd pick if I had to pick just one carrier. Then there's Saily, which uses Truphone out of Hong Kong. I haven't used this as much, as I only grabbed 3GB for $7. It runs on NTT but doesn't seem to have 5G access and doesn't seem to have as good speeds. Yes, Hong Kong is way closer to Japan, but latency didn't seem to be any better, at ~150ms. In all cases, I've had reception even in train tunnels and even at high speed on the bullet train, on all three carriers I've tried (I don't think I'll be able to play with a Rakuten SIM, which is rather disappointing). There have been cases where service has degraded, but it looks like you'd have reasonable cell service no matter which of the big three carriers you picked...and since T-Mobile roams on one of them, that's good enough if you're content to buy day passes.
  • Recently Browsing

    • No registered users viewing this page.
×
×
  • Create New...